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Chandrasekhar (1961) extensively investigated the linear dynamics of Rayleigh–
Bénard convection in an electrically conducting fluid exposed to a uniform vertical
magnetic field and enclosed by rigid, stress-free, upper and lower boundaries. He
determined the marginal stability boundary and critical horizontal wavenumbers for
the onset of convection as a function of the Chandrasekhar number Q or Hartmann
number squared. No closed-form formulae appeared to exist and the results were
tabulated numerically. We have discovered simple expressions that concisely describe
the stability properties of the system. When the Prandtl number Pr is greater than
or equal to the magnetic Prandtl number Pm the marginal stability boundary is
described by the curve Q = π−2[R − R1/3

c R2/3] where R is the Rayleigh number and
Rc = (27/4)π4 is Rayleigh’s famous critical value for the onset of stationary convection
in the absence of a magnetic field (Q = 0). When Pm >Pr the marginal stability
boundary is determined by this curve until intersected by the curve

Q =
1

π2

[
Pm2(1 + Pr)

Pr2(1 + Pm)
R −

(
(1 + Pr)(Pr + Pm)

Pr2

)1/3 (
Pm2(1 + Pr)

Pr2(1 + Pm)

)2/3

R1/3
c R2/3

]
.

An expression for the intersection point is derived and also for the critical horizontal
wavenumbers for which instability sets in along the marginal stability boundary either
as stationary convection or in an oscillatory fashion. A simple formula is derived for
the frequency of the oscillations. Also we show that in the limit of vanishing magnetic
diffusivity, or infinite electrical conductivity, the system is unstable for sufficiently
large R. Instability in this limit always sets in via overstability.

1. Introduction
Thompson (1951) and Chandrasekhar (1952) were the first to consider Rayleigh–

Bénard (RB) convection of electrically conducting fluids (i.e. liquid metals) in the
presence of an external uniform magnetic field. Here we revisit this classical linear RB-
problem with stress-free, rigid upper and lower boundaries. The top and bottom are
considered perfect heat conductors, maintained at constant (different) temperatures,
with the higher temperature at the bottom. The horizontal domain is unbounded, the
Boussinesq approximation is made, incompressibility is assumed and the kinematic
viscosity, diffusivity, electrical conductivity and magnetic diffusivity are constant.
This work was inspired by our recent success in establishing closed-form linear
stability conditions for Rayleigh-Bénard convection subjected to Coriolis forces (see
Kloosterziel & Carnevale 2003). Although there are some analogies between the two
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cases, the stability properties are quite different. However, no comparison will be made
here. In § 2.1 we briefly discuss the general properties of the cubic polynomial which
determines the eigenvalues p for normal-mode perturbations with an assumed time
dependence exp(pt). In § § 2.2–2.4 we show that the linear stability results tabulated
in chapter IV of Chandrasekhar’s (1961) monograph for this ‘easy’ case of so-called
free–free boundaries in the vertical can be summarized with simple closed-form
formulae. In § 2.5 we discuss the limit of zero magnetic diffusivity or infinite electrical
conductivity. In § 3 we summarize the results and discuss some additional matters of
possible interest.

2. Linear stability
In the standard RB-problem density variations are caused by temperature

variations. In the unperturbed system, the temperature distribution between the
bottom at z = 0 and top at z = d , with z the vertical coordinate, is linear with a
constant adverse temperature gradient β > 0, so that the temperature at the bottom
is higher than at the top. Density is assumed to vary with temperature via a constant
coefficient of volume expansion α. The fluid is electrically conducting and subjected
to a uniform external vertical magnetic field H which coincides with the direction
of the gravitational acceleration g, taken along the z-axis. The equations governing
the RB-problem for an incompressible fluid under the Boussinesq approximation
are discussed by Chandrasekhar (1961). Linearizing the equations about the basic
motionless state, a set of coupled linear equations is derived for the evolution of small-
amplitude velocity and temperature perturbations and the accompanying magnetic
field perturbations and electric current density. Equations (101), (102) and (105) in
chapter IV, § 42, can be used to derive a single equation for the vertical component w

of the velocity perturbations. This is a third-order differential equation with respect
to time t . The stability of the system is investigated by introducing perturbations
w ∝ exp[pt + i(kxx + kyy)] sin(nπz/d) which is the correct form for the boundary
conditions at the top and bottom mentioned above (i.e. rigid and stress free). The
vertical wavenumber takes the values n= 1, 2, . . . . Substitution of w of the form given
above in the third-order equation just mentioned yields a cubic polynomial with the
exponential time factor p as variable:

p̃3 + Bp̃2 + Cp̃ + D = 0, where p̃ =(d2/ν)p (2.1)

and

B =
Pr + Pm + PrPm

PrPm
(a2 + n2π2),

C =
1

PrPm

[
(1 + Pr + Pm)(a2 + n2π2)2 + n2π2PrQ − a2PmR

a2 + n2π2

]
,

D =
1

PrPm
[(a2 + n2π2)3 + (a2 + n2π2)n2π2Q − a2R].




(2.2)

Here

R =
gαβd4

κν
, Q =

σµ2H 2d2

ρ0ν
, Pr =

ν

κ
and Pm =

ν

η
(2.3)

are the Rayleigh number, the Chandrasekhar number (or Hartmann number squared),
the Prandtl number and the magnetic Prandtl number, respectively, and

a =
(
k2

x + k2
y

)1/2
d
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is the non-dimensional horizontal wavenumber. Note that p has been non-
dimensionalized with the time scale d2/ν where ν is the kinematic viscosity. ρ0 is the
constant reference density of the fluid which arises in the context of the Boussinesq
approximation. κ is the coefficient of thermal diffusivity, σ the electrical conductivity,
η the magnetic diffusivity and µ the magnetic permeability. σ, η and µ obey the
relation σ = (µη)−1.

R, Q, Pr and Pm characterize the system and a and n the perturbations. If for
given {R, Q, Pr, Pm} for all perturbations the three roots of (2.1) have Re p̃ < 0 there
is stability. When for certain perturbations there is at least one root with Re p̃ > 0,
there is instability. With each root of the cubic there is an associated combination
of a flow field, temperature and current distribution and a magnetic field, which
we refer to as ‘modes’, although not explicitly considered here. The hyper-surface
in the space spanned by {R, Q, Pr, Pm} separating stable systems from unstable
systems defines the marginally stable states. As explained by Chandrasekhar (1961),
when crossing from the stable to the unstable side, instability can set in either as
stationary convection in which case one root of (2.1) is p̃ = 0, or in an oscillatory
fashion when there are two purely imaginary, complex conjugate roots. This is referred
to as ‘overstability’ and the associated modes are called ‘overstable modes’. Modes
associated with p̃ = 0 are called ‘convective modes’.

2.1. The eigenvalues

It is important to note that B in (2.2) is always positive (assuming non-zero Pr and
Pm). As discussed in detail by Kloosterziel & Carnevale (2003) positive B implies
that the marginal stability boundary can be determined by mere examination of the
coefficients B, C and D without actually solving the cubic: stability/instability is
entirely determined by the signs of D and BC − D. Since the coefficients B, C and D

in (2.1) are real, either the three roots are real or one root is real and the other two
are complex conjugates. When D < 0 there will be a positive real root, which implies
instability. The other two roots always have Re p̃ < 0, that is, they are either both
negative real or, when complex conjugates, their real part is negative. When D = 0,
p̃ = 0 is a root so that there is at least one convective mode while when D > 0 there
will be a negative real root and therefore at least one damped mode. For D � 0 the
properties of the other two roots are determined by the sign of BC − D. The details
are given in table 1, where we list the signs of the real part of each root of the cubic
for all combinations of D and BC − D. In this table ‘unstable’ simply means that at
least one root has Re p̃ > 0. ‘Stable’ means that all three roots have Re p̃ < 0, i.e. all
modes are damped. This only occurs when both D > 0 and BC − D > 0. ‘Convection’
indicates that at least one root is p̃ = 0 while none of the other two roots has Re p̃ > 0
nor are they purely imaginary. A complex conjugate pair of purely imaginary roots
only occurs when D > 0 and BC − D = 0. That has been indicated with ‘overstable’. In
the overstable case the non-dimensional frequency ω is determined by ω2 = C =D/B

(see Kloosterziel & Carnevale 2003).

2.2. The convection curve

Equation (2.2) shows that for given a, n and Q , we have D < 0 when R is large
enough, which according to table 1 implies instability. For small enough R on the
other hand D > 0, while D =0 when

(x + n2π2)3 + (x + n2π2)n2π2Q − xR =0 where x ≡ a2 (2.4)
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D < 0 D = 0 D > 0

p̃ > 0 p̃ > 0 p̃ < 0
BC − D < 0 Re p̃ < 0 p̃ = 0 Re p̃ > 0

Re p̃ < 0 p̃ < 0 Re p̃ > 0
unstable unstable unstable

p̃ > 0 p̃ = 0 p̃ < 0
BC − D = 0 Re p̃ < 0 p̃ = 0 p̃ = +iω

Re p̃ < 0 p̃ < 0 p̃ = −iω
unstable convection overstable

p̃ > 0 p̃ = 0 p̃ < 0
BC − D > 0 Re p̃ < 0 Re p̃ < 0 Re p̃ < 0

Re p̃ < 0 Re p̃ < 0 Re p̃ < 0
unstable convection stable

Table 1. Diagram summarizing the properties of the three roots of the cubic (2.1) when B > 0.
Whenever the sign of Re p̃ is given, p̃ can either be real or is one of a complex conjugate pair.
In the overstable case the frequency ω is determined by ω2 = C or ω2 = D/B .

or, alternatively, when

R =
x + n2π2

x
[(x + n2π2)2 + n2π2Q]. (2.5)

As a function of x this has a minimum where ∂xR =0, which yields

2x3 + 3n2π2x2 = (n2π2)3 + (n2π2)2Q . (2.6)

Chandrasekhar (1961) numerically determined the positive real root xc of this cubic
as a function of Q , setting n= 1 since this yields the smallest critical Rayleigh
number. Substituting x = xc back in (2.5) he obtained the critical Rayleigh number
R(c)

c (Q). This is how table XIV with R(c)
c (Q) and a(c)

c (Q) = x1/2
c values in chapter IV

of Chandrasekhar (1961) was compiled.
An alternative approach that makes analytical progress possible is the following

(see figure 1a). The condition D = 0 or (2.4) can also be written as

f (z) = −n2π2R where f (z) = z3 + (n2π2Q − R)z and z = x + n2π2. (2.7)

Since dzf =3z2 +(n2π2Q−R), it follows that dzf � 0 for all z when n2π2Q � R, which
implies that (2.7) can only be satisfied for one negative z-value. Since x � 0, only z > 0
are relevant and in this case D > 0 for all x � 0. However, when n2π2Q < R there is a
local minimum and a maximum, i.e. points where dzf =0, at

z± = ±
(

R − n2π2Q

3

)1/2

and f (z±) = ∓ (4/27)1/2(R − n2π2Q)3/2. (2.8)

If f (z+) = −n2π2R, then the curve f (z) is tangent to the horizontal line −n2π2R at
z = z+ (see figure 1a) and the square of the critical horizontal wavenumber is simply
xc = z+ − n2π2. Solving f (z+) = −n2π2R, we find that this occurs when

Q =Q (c)
c (R, n) =

1

n2π2

[
R − R1/3

c (n)R2/3
]
, (2.9)
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(a) (b)

0

0

–n2π2 R

z+
z

z3 – (R – n2π2Q)z

Rc(2)
R

Rc(1)

D > 0

D = 0

D < 0
instability

Q
Qc

(c)(R,n =1)

Qc
(c)(R,n = 2)

Figure 1. (a) The critical Chandrasekhar number Qc and corresponding critical wavenumber
ac = x

1/2
c are determined by the condition that the curve f (z) = z3 − (R − n2π2Q)z is tangent

to the horizontal line −n2π2R at z = z+ with z = x + n2π2 and z+ the positive z-value for
which dzf (z) = 0 (see text). (b) The critical Chandrasekhar number Q (c)

c as a function of R
for n= 1 and n= 2. The leftmost curve Q (c)

c (R, n= 1), given by (2.11), starts on the R-axis at
R =Rc =(27/4)π4 and for n> 1 at Rc(n) = n4Rc . For {R,Q} left of the curve Q (c)

c (R, n= 1)
D > 0 for all {a, n}. On the curve, D = 0 only when {a, n} = {a(c)

c (R), 1}, with a
(c)
c (R) given by

(2.12), and D > 0 for all other {a, n}. For points {R,Q} to the right of the leftmost curve there
are {a, n} for which D < 0, implying instability, e.g. there will be a positive real root of (2.1).

where Rc(n) = (27/4)n4π4. That is, for fixed R, this is the critical Q-value for which
D = 0 at z = z+ = xc + n2π2, but D > 0 for all other z > 0. For smaller Q there is a
range of positive z-values for which D < 0. Substituting Q given by (2.9) back in the
expression for z+ (2.8), we find that

xc =(n2π2R/2)1/3 − n2π2. (2.10)

In the (R, Q)-plane the curves Q (c)
c (R, n) start on the R-axis (where Q =0) at

R = Rc(n). The leftmost curve has n= 1, as shown in figure 1(b). It follows that D > 0
for all {a, n} when {R, Q} is to the left of the curve

Q (c)
c (R) =

1

π2

[
R − R1/3

c R2/3
]
, (2.11)

where Rc = Rc(n= 1) = (27/4)π4. This is the inverse of the (implicit) relation R(c)
c (Q)

numerically determined by Chandrasekhar (1961). When {R, Q} lies exactly on the
curve (2.11), D = 0 for {a, n} = {a(c)

c (R), 1} with

a(c)
c (R) =

[
(π2R/2)1/3 − π2

]1/2
, (2.12)

which follows from (2.10) with n=1 (remember that x = a2), but D > 0 for all other
{a, n}. Thus, when {R, Q} lies on (2.11) there is one convective mode (p̃ = 0) when
{a, n} = {a(c)

c (R), 1} while for all other {a, n} at least one mode is damped (p̃ < 0; see
table 1). For {R, Q} to the right of the curve (2.11) there are a and n for which D < 0
and there will be unstable modes (p̃ > 0; see table 1).

It may be noted that according to (2.11) Q (c)
c = 0 when R = Rc. Putting R = Rc in

(2.12), one finds that a(c)
c (Rc) = (π2/2)1/2. R = Rc and a(c)

c =(π2/2)1/2 are the famous
critical Rayleigh number and horizontal wavenumber found by Rayleigh (1916) in
the classical problem without a magnetic field (Q =0) or any other external forces.
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2.3. The overstability curve

When {R, Q} lies to the left of the ‘convection curve’ (2.11) stability is not guaranteed.
According to table 1 we have to investigate the sign of BC − D. It follows with (2.2)
that BC − D = 0 when

(x + n2π2)3 +
(x + n2π2)n2π2Pr2Q

(1 + Pr)(Pr + Pm)
− xPm2R

(1 + Pm)(Pr + Pm)
= 0. (2.13)

Note that (2.13) follows from (2.4) by substituting

Pm2R

(1 + Pm)(Pr + Pm)
for R, and

Pr2Q

(1 + Pr)(Pr + Pm)
for Q (2.14)

in (2.4). Thus, the critical wavenumber and Chandrasekhar number for which BC −
D =0 can be found in an analogous fashion as for D = 0 by redefining R and Q in
(2.7) and (2.8), and then solving for f (z′

+) = −n2π2R′, where f (z) = z3 +(n2π2Q′ −R′)z
and

z′
+ =

(
R′ − n2π2Q′

3

)1/2

, R′ =
Pm2R

(1 + Pm)(Pr + Pm)
, Q ′ =

Pr2Q

(1 + Pr)(Pr + Pm)
.

We then find that BC − D =0 along the curve

Q (o)
c (R, Pr, Pm) =

1

π2

[
Pm2(1 + Pr)

Pr2(1 + Pm)
R

−
(

(1 + Pr)(Pr + Pm)

Pr2

)1/3 (
Pm2(1 + Pr)

Pr2(1 + Pm)

)2/3

R1/3
c R2/3

]
(2.15)

when {a, n} = {a(o)
c (R, Pr, Pm), 1}, where

a(o)
c (R, Pr, Pm) =

[(
π2Pm2R

2(1 + Pm)(Pr + Pm)

)1/3

− π2

]1/2

. (2.16)

For all other {a, n}, BC − D > 0 when {R, Q} lies on (2.15).
When {R, Q} is to the left of (2.15), BC − D > 0 for all {a, n}, and when {R, Q} is

to the right of (2.15), BC − D < 0 for some {a, n}. The curve Q (o)
c (R, Pr, Pm) starts

on the R-axis at

R =Rs =

(
1 +

Pr + Pm + PrPm

Pm2

)
Rc. (2.17)

This follows from setting Q (o)
c = 0 in (2.15). Clearly Rs >Rc for all Pr, Pm > 0. Thus,

for all finite, non-zero Pr and Pm the curve Q (o)
c (R, Pr, Pm) starts on the R-axis to

the right of the convection curve (2.11) since that one starts at R =Rc. Figure 2 shows
this for two cases that are representative for all combinations of Pr > 0 and Pm > 0.
The superscript (o) in (2.15) and (2.16) indicates that these are critical numbers for
which there are overstable modes, as will be seen shortly.

Consider the factor

δ =
Pm2(1 + Pr)

Pr2(1 + Pm)
(2.18)

which multiplies R in (2.15), and

γ =

(
(1 + Pr)(Pr + Pm)

Pr2

)1/3 (
Pm2(1 + Pr)

Pr2(1 + Pm)

)2/3

, (2.19)
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(a) (b)

0
0Rs

R

Rc

Pm > Pr

D < 0
unstable

Q
D > 0
BC – D > 0
stable

Qi

Rs

R

Rc Ri

Pm ≤ Pr

Qc
(c)

D > 0
BC – D > 0
stable

Qc
(c)

Qc
(c)

Qc
(o)

(III)

(II)

(I)

Qc
(o)

Figure 2. (a) Graph showing that when Pm � Pr the overstability curve Q (o)
c (R,Pr,Pm) (2.15)

does not cut the convection curve Q (c)
c (R) (2.11). The overstability curve starts at R = Rs given

by (2.17), the convection curve at R = Rc . To the left of Q (c)
c (R) (thick line) for all {a, n} both

D > 0 and BC − D > 0, implying stability. To the right D < 0 for some {a, n} which implies
instability (see table 1). This example was created with Pm = 0.98 and Pr = 1. (b) For Pm > Pr
the curves cut at {R,Q} = {Ri ,Q i} given by (2.20). Ri and Q i decrease with increasing Pm
with Pr held fixed (see figure 3). In region (I) for some {a, n} D < 0, BC − D > 0, in (II)
D > 0, BC − D < 0 and in (III) D < 0, BC − D < 0, each combination implying instability
(see table 1). This example was created using Pm =2 and Pr =1.

which multiplies R1/3
c R2/3 in (2.15). With a little algebra it follows that γ > δ for all

finite Pr, Pm > 0. Further it is seen that δ > 1 when Pm >Pr . Since for large positive
R the convection curve is Q(c)

c ≈ R/π2 while the overstability curve Q(o)
c ≈ δR/π2,

it follows that when δ > 1 they must intersect at some point in the (R, Q)-plane.
Equating (2.11) to (2.15), we find that the curves intersect at {R, Q} = {Ri , Q i} with

Ri(Pr, Pm) =

(
γ − 1

δ − 1

)3

Rc, Q i(Pr, Pm) =
1

π2

(
γ − 1

δ − 1

)2 [(
γ − 1

δ − 1

)
− 1

]
Rc.

(2.20)

When Pm > Pr , the terms multiplying Rc in (2.20) are positive because then γ > δ > 1.
Thus, the intersection occurs at Ri >Rc and Q i > 0. An example is shown in
figure 2(b). For Pr = Pm (δ = 1), the intersection point {Ri , Q i} is formally at infinity.
When Pm < Pr we have δ < 1 and the curves never intersect at any point in the positive
quadrant of the (R, Q)-plane. A representative example is shown in figure 2(a).

The expressions (2.18) and (2.19) for δ and γ show that when we take the limit
Pm → ∞ while keeping Pr fixed, the term (γ − 1)/(δ − 1) → 1. Thus, with (2.20) it is
seen that in this limit, Ri → Rc and Q i → 0. This also follows with (2.17), i.e. in the
limit Pm → ∞, Rs → Rc. This limit is further discussed below in § 2.5. Figure 3 shows
a representative example of how Ri and Q i vary with increasing Pm while keeping
Pr fixed.

2.4. The marginal stability boundary

When Pm � Pr consider the ‘boundary’ consisting of the convection curve (2.11)
drawn as a thick line in figure 2(a). For all points {R, Q} to the left of this boundary
D > 0 and BC − D > 0 for perturbations with any {a, n}. According to table 1 the
system is stable for such R and Q values, i.e. the three roots of the cubic have Re p̃ < 0
for all {a, n}. From the discussion in § 2.2 it should be clear that for all {R, Q} to
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0

Rc

Pr

5Rc

Ri

Qi

Pm
25Pr

Figure 3. Example of Ri(Pr,Pm) and Q i(Pr,Pm) given by (2.20) for fixed Pr and variable
Pm � Pr . This graph was created using Pr = 1.

the right of the boundary there are perturbations with wavenumbers {a, n} for which
D < 0, which implies instability.

The boundary composed of the convection curve (2.11) for Rc � R � Ri and the
overstability curve (2.15) for R > Ri separates the stable region from the unstable
region in the (R, Q)-plane when Pm >Pr . This boundary is drawn as a thick line
in figure 2(b). Again for all points {R, Q} to the left of this boundary D > 0 and
BC − D > 0 for perturbations with any {a, n} and for such R and Q the system is
stable. From the discussion in § 2.2 and § 2.3 it follows that in each of the regions
marked as (I), (II) or (III) in figure 2(b) either D < 0 and/or BC − D < 0 for certain
{a, n}. According to table 1 therefore for {R, Q} to the right of the boundary the
system is unstable.

When {R, Q} lies on either boundary all modes are damped, except when {R, Q}
is on the convection curve in figure 2(a) (for Pm <Pr) or that section of the
boundary in figure 2(b) (for Pm >Pr). In both cases a convective mode (p̃ = 0) can be
excited with {a, n} = {a(c)

c (R), 1}. When {R, Q} is on the overstability curve section in
figure 2(b), two overstable modes can be excited with {a, n} = {a(o)

c (R, Pr, Pm), 1}.
At the intersection point {Ri , Q i} all modes are damped too, except when
{a, n} = {a(c)

c (R), 1} or {a, n} = {a(o)
c (R, Pr, Pm), 1}. There instability can set in either

through stationary convection or through overstability, even simultaneously but with
different wavelengths since a(o)

c (R, Pr, Pm) 	= a(c)
c (R) for all finite non-zero Pr and

Pm . This proves that for Pm � Pr the marginal stability boundary is simply the
convection curve (2.11) (figure 2a), while for Pm > Pr it is the convection curve up to
the intersection point {Ri , Q i} continued by the overstability curve (2.15) (figure 2b).

Finally, the non-dimensional oscillation frequency ω of the overstable modes along
the overstability curve section of the marginal stability boundary is obtained by using
the relations ω2 = C and ω2 = D/B (see Kloosterziel & Carnevale 2003). The common
element R that appears in each of these expressions can be eliminated between them
and the result is

ω2 =
Pm − Pr

Pm2(1 + Pr)
π2Q − (π2 + a2)2

Pm2
. (2.21)

This equation was derived by Chandrasekhar in a somewhat complicated fashion. He
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used it to infer that for overstability it is necessary that

π2Q >
1 + Pr

Pm − Pr
(π2 + a2)2

(equation (235) in Chandrasekhar 1961, § 46) since this implies that ω is real, so
that the roots p̃ = ±iω are purely imaginary. He did not derive a formula for the
frequency of the overstable modes. It is obtained by substituting Q =Q (o)

c (R, Pr, Pm)
and a = a(o)

c (R, Pr, Pm) in (2.21). This yields

ω2(R, Pr, Pm) =
Pm − Pr

Pr2(1 + Pm)
R

−
(

Pm2 − 2
3
Pr2

Pr2Pm2

)(
Pm2

(1 + Pm)(Pr + Pm)

)2/3

R1/3
c R2/3. (2.22)

2.5. The limit of zero magnetic diffusivity or infinite electrical conductivity

According to (2.17), when Pm 
 Pr and Pm 
 1 the intersection point {Ri , Q i} ≈
{Rc, 0}. In other words, when Pm satisfies these two conditions, the marginal stability
boundary is essentially everywhere the overstability curve so that instability can be
expected to set in as oscillatory convection, even for very small Q and R slightly
exceeding Rc. This limit Pm → ∞ can be considered the limit η → 0 or zero magnetic
diffusivity. Chandrasekhar (1961) called this the limit of zero ‘resistivity’. The stability
properties of the system with η = 0 can be determined by letting Pm → ∞ in the
coefficients B, C, D (2.2) of the cubic (2.1). But, some care must be exercised since
σ = (µη)−1, so that the electrical conductivity σ → ∞ as η → 0. Therefore with
everything else held fixed, Q → ∞ in C and D. But the terms proportional to Q/Pm
that occur in C and D remain finite. The coefficients become

B =
1 + Pr

Pr
(a2 + n2π2),

C =
1

Pr

[
(a2 + n2π2)2 + n2π2PrQ̃ − a2R

a2 + n2π2

]
,

D =
1

Pr
(a2 + n2π2)n2π2Q̃,




(2.23)

where

Q̃ =
µH 2d2

ρ0ν2
=

Q

Pm
. (2.24)

Alternatively, one can set η = 0 in equation (102) in § 42 of Chandrasekhar (1961), and
by elimination between (101), (102) and (105), again derive a third-order differential
equation in time for w. After substitution of the normal-modes ansatz for w as in
§ 2 and subsequent non-dimensionalization of p with the viscous time scale d2/ν, one
also finds the coefficients (2.23).

First note that, unlike when Pm is finite (η 	= 0), D > 0 everywhere when H 	= 0 so
that for all Pr, R and Q̃ > 0 (H 	= 0) there is always one damped mode. BC − D =0
when

(x + n2π2)3 +
(x + n2π2)n2π2Pr2Q̃

(1 + Pr)
− xR = 0, (2.25)

where x = a2 as before. Equation (2.25) follows from (2.4) by replacing Q with
Pr2Q̃/(1 + Pr) in (2.4). Thus, in the (R, Q̃)-plane the marginal stability boundary is
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the curve

Q̃
(o)

c (R, Pr) =
1 + Pr

π2Pr2

[
R − R1/3

c R2/3
]
. (2.26)

To the left of it BC − D > 0 and D > 0 for all {a, n} (stability), whereas to the right
of it BC − D < 0 for some {a, n} while D > 0 (instability). For {R, Q̃} on the curve
BC − D =0 when {a, n} = {a(o)

c , 1} with

a(o)
c (R) =

[
(π2R/2)1/3 − π2

]1/2
(2.27)

there will be two overstable modes since D > 0 for all {a, n}. Thus, for any
Q̃> 0 there will be instability when R is large enough and the onset of instability is al-
ways through overstability. Remarkably, (2.27) is the same as the critical wavenumber
for the onset of stationary convection (2.12) for given R and finite Pm whereas here
it is the critical wavenumber for the onset of oscillatory convection, and unlike in the
case of finite Pm (see (2.16)), it does not vary with the value of Pr . The frequency of
the overstable modes is

ω2 =
D

B
=

n2π2Q̃

1 + Pr
, (2.28)

in which we have to put n= 1 and Q̃ = Q̃
(o)

c (R, Pr). This yields

ω2(R, Pr) =
1

Pr2

[
R − R1/3

c R2/3
]
, (2.29)

which, unlike the critical wavenumber (2.27), does depend on the Prandtl number.
The attentive reader may have noticed that (2.26) follows from (2.15) by dividing

both sides in (2.15) by Pm and then taking the limit Pm → ∞, while the same limit
applied to (2.16) and (2.22) yields (2.27) and (2.29), respectively. But, if one had
proceeded in this fashion one could have been led to believe that the convection
curve (2.11) separating regions with D > 0 from D < 0 is still there, but it is not. As
we showed, D > 0 everywhere when Q̃ > 0.

It may seem strange that D =0 for all {a, n} when Q̃ =0 or H = 0, i.e. no magnetic
field. This would appear to imply that for all R and {a, n} there is convection, i.e.
p̃ = 0 is always a root. When H = 0 the problem should reduce to that of Rayleigh
(1916) who showed that all modes are damped for all {a, n} when R <Rc. The
analysis here is based on the third-order differential equation with respect to time t

for the vertical velocity w, derived by elimination between equations (101), (102) and
(105) in chapter IV, § 42 of Chandrasekhar (1961). When η =0 and H = 0 in that set
of equations, one equation (equation (102) for the vertical component of the magnetic
field perturbation) is decoupled from the other two (for w and the temperature
perturbation) and is not needed. Thus, when η = 0 and Q̃ = 0 the analysis should be
based on an equation for w that is second-order in time. The root p̃ = 0 for all R
when Q̃ = 0 is spurious and due to over-differentiation with respect to time.

3. Summary and discussion
Chandrasekhar (1961) sought to describe the convection curve in the (R, Q)-plane

as the curve R(c)
c (Q) and the critical wavenumber for convection as a(c)

c (Q). For this
he numerically solved the cubic in x = a2 (2.6) as a function of Q and substituted
the solution a = a(c)

c (Q) in (2.5) to obtain the critical Rayleigh number R(c)
c (Q). For

a large range of Q-values the results were tabulated in table XIV in chapter IV.
No closed-form formulae were noted by him for these relations that have Q as the
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Figure 4. Graphs showing Chandrasekhar’s data from table XIV, Chapter 4 (marked by •)
with (a) R(c)

c (Q) normalized with Rc and (b) a
(c)
c (Q). The curve drawn through the data points

in (a) is the exact solution (3.2) and in (b) the solution (3.3). In (a) the same curve would be
found when the inverse of (3.2) is plotted, i.e. Q (c)

c (R) given by (2.11).

independent variable. We found that the problem is equivalent to finding the critical
Chandrasekhar number for which for given R the function y = f (z) in (2.7) is tangent
to the horizontal line y = −n2π2R. This led to the discovery of simple expressions for
the convection curve Q (c)

c (R) (2.11), the overstability curve Q (o)
c (R, Pr, Pm) (2.15), the

critical horizontal wavenumber for the onset of stationary convection a(c)
c (R) (2.12)

and oscillatory convection a(o)
c (R, Pr, Pm) (2.16) as well as the oscillation frequency

ω(R, Pr, Pm) (2.22) of the overstable modes and the intersection point {Ri , Q i} (2.20)
beyond which the overstability curve determines the stability boundary. None of these
expressions appear to have been noted before.

Also, when Q is used as the independent variable, everything can be expressed with
closed-form formulae. For example, a cubic equation in R describing the convection
curve follows with (2.11):

R3 − (3π2Q + Rc)R
2 + 3(π2Q)2R − (π2Q)3 = 0. (3.1)

Using the identity 4 cosh3(z) − 3 cosh(z) = cosh(3z), after a substitution which deletes
the term proportional to R2, the convection curve R(c)

c (Q) is found to be described by

R(c)
c (Q) = Rc

{
1
3

+ Q ′ + 2
3

(
1 + 6Q′)1/2

cosh

[
1
3
arcosh

(
2 + 18Q ′ + 27Q ′2

2(1 + 6Q ′)3/2

)]}
,

(3.2)

where for convenience we have put Q ′ = π2Q/Rc. This is the inverse of the far simpler
expression Q (c)

c (R) given by (2.11). An expression for R(o)
c (Q, Pr, Pm) (the overstability

curve) follows from (3.2) by replacing R and Q with the substitutions given in (2.14).
The cubic (2.6) can also be solved exactly to obtain the critical wavenumber for
stationary convection as a function of the Chandrasekhar number. For n= 1 the
solution is

a(c)
c (Q) = π

{
cosh

[
1
3
arcosh

(
1 +

2Q

π2

)]
− 1

2

}1/2

. (3.3)

This may be compared to the inverse relation a(c)
c (R) given by (2.12). In figure 4

we show the exact solutions R(c)
c (Q) and a(c)

c (Q) together with the 49 data points
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from Chandrasekhar’s table XIV. We found that the relative errors in the data are
extremely small, on the order of 1/100 of one percent. But, there are a number
of a(c)

c -values calculated by Chandrasekhar for large Q where the errors are almost
0.5%. The critical wavenumber a(o)

c (Q, Pr, Pm) for oscillatory convection follows by
replacing Q in (3.3) by the transformed Q given in (2.14). This yields

a(o)
c (Q, Pr, Pm) = π

{
cosh

[
1
3
arcosh

(
1 +

2Pr2Q

π2(1 + Pr)(Pr + Pm

)]
− 1

2

}1/2

. (3.4)

If this is substituted in (2.21), i.e. setting a = a(o)
c (Q, Pr, Pm) there, one obtains a

closed-form formula for the frequency ω(Q, Pr, Pm) of the overstable modes:

ω2(Q, Pr, Pm) =
Pm − Pr

Pm2(1 + Pr)
π2Q

− π4

Pm2

(
1
2

+ cosh

[
1
3
arcosh

(
1 +

2Pr2Q

π2(1 + Pr)(Pr + Pm

)])2

, (3.5)

which is the inverse of the formula for ω2(R, Pr, Pm) given by (2.22). The various
asymptotic expressions established by Chandrasekhar for large Q follow quickly
from the expressions just given and mentioned, using that for large argument z,
arcosh(z) ≈ ln 2z and cosh(z) ≈ 1

2
ez. They can also rapidly be determined using the

exact expressions that have R as the independent variable, i.e. by assuming that R is
large in (2.11), (2.12), (2.15), (2.16) and (2.22).
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